Spectralon is a fluoropolymer, which has the highest diffuse reflectance of any known material or coating over the ultraviolet, visible, and near-infrared regions of the spectrum. It exhibits highly Lambertian behavior, and can be machined into a wide variety of shapes for the construction of optical components such as calibration targets, integrating spheres, and optical pump cavities for lasers.
Video Spectralon
Characteristics
Spectralon's reflectance is generally >99% over a range from 400 to 1500 nm and >95% from 250 to 2500 nm. However, grades are available with added carbon to achieve various gray levels. Surface or subsurface contamination may lower the reflectance at the extreme upper and lower ends of the spectral range. The material is also highly lambertian at wavelengths from 257 nm to 10600 nm, although reflectivity decreases at wavelengths beyond the near infrared. Spectralon exhibits absorbances at 2800 nm, then absorbs strongly (<20% reflectance) from 5400 to 8000 nm. Although the diffused reflectance has been shown to increase overall laser efficiency, the material has a fairly low damage threshold of 4 joules per square centimeter, limiting its use to lower powered applications.
The Lambertian reflectance arises from the material's surface and immediate subsurface structure. The porous network of thermoplastic produces multiple reflections in the first few tenths of a millimeter. Spectralon can partially depolarize the light it reflects, but this effect decreases at high incidence angles. Although it is extremely hydrophobic, this open structure readily absorbs non-polar solvents, greases and oils. Impurities are difficult to remove from Spectralon; thus, the material should be kept free from contaminants to maintain its reflectance properties.
The material has a hardness roughly equal to that of high-density polyethylene and is thermally stable to > 350 °C. It is chemically inert to all but the most powerful bases such as sodium amide and organo-sodium or lithium compounds. The material is extremely hydrophobic. Gross contamination of the material or marring of the optical surface can be remedied by sanding under a stream of running water. This surface refinishing both restores the original topography of the surface and returns the material to its original reflectance. Weathering tests on the material show no damage upon exposure to atmospheric UV flux. The material shows no sign of optical or physical degradation after long-term immersion testing in sea water.
Maps Spectralon
Applications
Three grades of Spectralon reflectance material are available: optical grade, laser grade and space grade. Optical-grade Spectralon is characterized by a high reflectance and Lambertian behavior and is primarily used as a reference standard or target for calibration of spectrophotometers. Laser-grade Spectralon offers the same physical characteristics as optical-grade material but is a different formulation of resin that gives enhanced performance when used in laser pump cavities. Spectralon is used in a variety of "side pumped" lasers. Space-grade Spectralon combines high reflectance with an extremely lambertian reflectance profile and is used for terrestrial remote sensing applications.
Spectralon's optical properties make it ideal as a reference surface in remote sensing and spectroscopy. For instance, it is used to obtain leaf reflectance and bidirectional reflectance distribution function (BRDF) in the laboratory. It can also be applied to obtain vegetation fluorescence using the Fraunhofer lines. Basically Spectralon allows removing the contributions in the emitted light that are not directly linked to the surface (leaf) properties but to geometrical factors.
History
Spectralon was developed by Labsphere and has been available since 1986.
References
External links
- Spectralon Product Details
- Spectralon Tech Details
Source of article : Wikipedia